Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Rev Inst Med Trop Sao Paulo ; 65: e36, 2023.
Article in English | MEDLINE | ID: covidwho-20235888

ABSTRACT

Visceral leishmaniasis (VL) is a chronic vector-borne zoonotic disease caused by trypanosomatids, considered endemic in 98 countries, mainly associated with poverty. About 50,000-90,000 cases of VL occur annually worldwide, and Brazil has the second largest number of cases in the world. The clinical picture of VL is fever, hepatosplenomegaly, and pancytopenia, progressing to death in 90% of cases due to secondary infections and multi-organ failure, if left untreated. We describe the case of a 25-year-old female who lived in the metropolitan area of Sao Paulo, who had recently taken touristic trips to several rural areas in Southeastern Brazil and was diagnosed post-mortem. During the hospitalization in a hospital reference for the treatment of COVID-19, the patient developed acute respiratory failure, with chest radiographic changes, and died due to refractory shock. The ultrasound-guided minimally invasive autopsy diagnosed VL (macrophages containing amastigote forms of Leishmania in the spleen, liver and bone marrow), as well as pneumonia and bloodstream infection by gram-negative bacilli.


Subject(s)
COVID-19 , Leishmaniasis, Visceral , Respiratory Insufficiency , Female , Humans , Adult , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/drug therapy , Diagnosis, Differential , Autopsy , COVID-19/diagnosis , Brazil , Respiratory Insufficiency/diagnosis , COVID-19 Testing
2.
EBioMedicine ; 83: 104229, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1996119

ABSTRACT

BACKGROUND: Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19. METHODS: We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed. FINDINGS: Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production. INTERPRETATION: Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments. FUNDING: CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.


Subject(s)
COVID-19 , Cytokines , Humans , Lung/pathology , SARS-CoV-2
3.
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology ; 134(3):e84, 2022.
Article in English | ScienceDirect | ID: covidwho-1983748

ABSTRACT

We present a case of a patient who died of complications of COVID-19. A 29-year-old woman presented multiple bleeding ulcerous lesions involving lips and inner lip mucosa. The patient was pregnant (29th week) and presented fever, diarrhea, dyspnea, nausea, dysgeusia, and anosmia in a 27-day evolution until death. The patient was admitted to the intensive care unit, submitted to mechanical ventilation and extracorporeal membrane oxygenation, developed fetal distress, and was submitted to an emergency C-section. Cause of death was a cardiogenic shock. During minimally invasive autopsy, oral lesions were identified and postmortem biopsy was performed. Clinical hypotheses were SARS-CoV-2 vs herpes virus. The histopathologic analyses revealed mononuclear inflammatory infiltrate, and keratinocytes showed no viral inclusion or cytopathic alterations. A large amount of a cuboid shaped gram-positive coccus in a tetrad packet arrangement was observed, compatible with Sarcina ventriculi. An abundant amount of Candida spp. was also observed. Samples were negative for immunohistochemistry to anti-SARS-CoV-2, herpes simplex virus, and cytomegalovirus.

4.
J Bras Pneumol ; 48(3): e20220209, 2022 07 08.
Article in English, Portuguese | MEDLINE | ID: covidwho-1935015

Subject(s)
COVID-19 , Humans , Lung , SARS-CoV-2
5.
Clin Microbiol Infect ; 28(8): 1066-1075, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1859445

ABSTRACT

BACKGROUND: Many postmortem studies address the cardiovascular effects of COVID-19 and provide valuable information, but are limited by their small sample size. OBJECTIVES: The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies. DATA SOURCES: We searched the online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus, and Web of Science for concepts of autopsy or histopathology combined with COVID-19, published between database inception and February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory. STUDY ELIGIBILITY CRITERIA: Articles were considered eligible for inclusion if they reported human postmortem cardiovascular findings among individuals with a confirmed SARS coronavirus type 2 (CoV-2) infection. PARTICIPANTS: Confirmed COVID-19 patients with post-mortem cardiovascular findings. INTERVENTIONS: None. METHODS: Studies were individually assessed for risk of selection, detection, and reporting biases. The median prevalence of different autopsy findings with associated interquartile ranges (IQRs). RESULTS: This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median: 100.0%; IQR, 20%-100%; number of studies = 9; number of patients = 64) and myocardial oedema (median: 55.5%; IQR, 19.5%-92.5%; number of studies = 4; number of patients = 46). The median reported prevalence of extensive, focal active, and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median: 69.0%; IQR, 46.8%-92.1%) and fibrosis (median: 35.0%; IQR, 35.0%-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%). CONCLUSIONS: Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19 and SARS-CoV-2 cardiac tropism, as well as the low prevalence of myocarditis in COVID-19.


Subject(s)
COVID-19 , Myocarditis , Aged , Autopsy , Humans , Lung , Myocarditis/epidemiology , SARS-CoV-2
6.
Insights into Imaging ; 13(1), 2022.
Article in English | ProQuest Central | ID: covidwho-1837549

ABSTRACT

BackgroundBrain abnormalities are a concern in COVID-19, so we used minimally invasive autopsy (MIA) to investigate it, consisting of brain 7T MR and CT images and tissue sampling via transethmoidal route with at least three fragments: the first one for reverse transcription polymerase chain reaction (RT-PCR) analysis and the remaining fixed and stained with hematoxylin and eosin. Two mouse monoclonal anti-coronavirus (SARS-CoV-2) antibodies were employed in immunohistochemical (IHC) reactions.ResultsSeven deceased COVID-19 patients underwent MIA with brain MR and CT images, six of them with tissue sampling. Imaging findings included infarcts, punctate brain hemorrhagic foci, subarachnoid hemorrhage and signal abnormalities in the splenium, basal ganglia, white matter, hippocampi and posterior cortico-subcortical. Punctate brain hemorrhage was the most common finding (three out of seven cases). Brain histological analysis revealed reactive gliosis, congestion, cortical neuron eosinophilic degeneration and axonal disruption in all six cases. Other findings included edema (5 cases), discrete perivascular hemorrhages (5), cerebral small vessel disease (3), perivascular hemosiderin deposits (3), Alzheimer type II glia (3), abundant corpora amylacea (3), ischemic foci (1), periventricular encephalitis foci (1), periventricular vascular ectasia (1) and fibrin thrombi (1). SARS-CoV-2 RNA was detected with RT-PCR in 5 out of 5 and IHC in 6 out 6 patients (100%).ConclusionsDespite limited sampling, MIA was an effective tool to evaluate underlying pathological brain changes in deceased COVID-19 patients. Imaging findings were varied, and pathological features corroborated signs of hypoxia, alterations related to systemic critically ill and SARS-CoV-2 brain invasion.

8.
Clin Infect Dis ; 73(Suppl_5): S442-S453, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1574211

ABSTRACT

BACKGROUND: Minimally invasive autopsies, also known as minimally invasive tissue sampling (MITS), have proven to be an alternative to complete diagnostic autopsies (CDAs) in places or situations where this procedure cannot be performed. During the coronavirus disease 2019 (COVID-19) pandemic, CDAs were suspended by March 2020 in Brazil to reduce biohazard. To contribute to the understanding of COVID-19 pathology, we have conducted ultrasound (US)-guided MITS as a strategy. METHODS: This case series study includes 80 autopsies performed in patients with COVID-19 confirmed by laboratorial tests. Different organs were sampled using a standardized MITS protocol. Tissues were submitted to histopathological analysis as well as immunohistochemical and molecular analysis and electron microscopy in selected cases. RESULTS: US-guided MITS proved to be a safe and highly accurate procedure; none of the personnel were infected, and accuracy ranged from 69.1% for kidney, up to 90.1% for lungs, and reaching 98.7% and 97.5% for liver and heart, respectively. US-guided MITS provided a systemic view of the disease, describing the most common pathological findings and identifying viral and other infectious agents using ancillary techniques, and also allowed COVID-19 diagnosis confirmation in 5% of the cases that were negative in premortem and postmortem nasopharyngeal/oropharyngeal swab real-time reverse-transcription polymerase chain reaction. CONCLUSIONS: Our data showed that US-guided MITS has the capacity similar to CDA not only to identify but also to characterize emergent diseases.


Subject(s)
COVID-19 , Autopsy , Brazil/epidemiology , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2 , Ultrasonography, Interventional
9.
J Oral Microbiol ; 13(1): 1848135, 2020 Nov 26.
Article in English | MEDLINE | ID: covidwho-1574293

ABSTRACT

Background: The ability of coronavirus SARS-CoV-2 to spread is one of the determinants of the COVID-19 pandemic status. Until June 2020, global COVID-19 cases surpassed 10 million. Asymptomatic patients, with no respiratory impairment, are believed to be responsible for more than 80% of the transmission. Other viruses have been consistently detected in periodontal tissues. Objective: The aim of this study was to investigate the presence of SARS-CoV-2 in periodontal tissue. Methods: We conducted video-endoscope minimally invasive post-mortem biopsy in seven fatal cases of COVID-19, using a regular endoscope video system associated with a smartphone to locate periodontal tissue. We analyzed the samples using RT-PCR, to identify the SARS-CoV-2 RNA and histopathological analysis. Results: The seven studied autopsies with positive laboratory tests for COVID-19 included 57.14% of female patients at the average age of 47.4 (range 8 to 74). In five cases, periodontal tissue was positive for SARS-CoV-2 (RT-PCR). Histopathologic analyses showed morphologic alterations in the keratinocytes of the junctional epithelium, a vacuolization of the cytoplasm and nucleus and nuclear pleomorphism. Conclusion: We presented a biomolecular analysis obtained from minimally invasive autopsies. This is the first study to demonstrate the presence of SARS-CoV-2 in periodontal tissue in COVID-19 positive patients.

10.
Clinics (Sao Paulo) ; 76: e3543, 2021.
Article in English | MEDLINE | ID: covidwho-1551802

ABSTRACT

OBJECTIVES: Ultrasound-guided minimally invasive autopsies (MIA-US) are an alternative to conventional autopsies and have been used in our institution to investigate the pathophysiology of COVID-19 since the beginning of the pandemic. Owing to the limitations of post-mortem biopsies for evaluating cardiopulmonary events involving large vessels, we continuously improved the technique during this period. Objectives: To demonstrate the usefulness of an extended MIA-US technique (EMIA-US) for the study of thoracic involvement in COVID-19. METHOD: US-guided percutaneous tissue sampling was combined with a small thoracic incision (≤5 cm), allowing for the sampling of larger tissue samples or even the entire organ (lungs and heart). RESULTS: EMIA-US was performed for eight patients who died of COVID-19 in 2021. We demonstrate cardiopulmonary events, mainly thromboembolism and myocardial infarction, that could be evaluated using EMIA-US. CONCLUSIONS: Minimally invasive image-guided post-mortem tissue sampling is a flexible and practical method to conduct post-mortem studies of human diseases, mainly in areas that do not have autopsy facilities or, alternatively, when autopsy is not possible owing to financial constraints, cultural and religious values, or for safety reasons, such as in the case of highly contagious infectious diseases. We present evidence that EMIA-US is feasible and can be used as an alternative to increase the accuracy of MIA-US in detecting cardiopulmonary events involving large vessels, which may not be assessed through post-mortem biopsies.


Subject(s)
COVID-19 , Autopsy , Cause of Death , Humans , SARS-CoV-2 , Ultrasonography
11.
Braz J Infect Dis ; 25(6): 101651, 2021.
Article in English | MEDLINE | ID: covidwho-1509601

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic is a global health emergency. The clinical course of COVID-19 in children is mild in most of the cases, but multisystem inflammatory syndrome in children (MIS-C) is recognized as a potential life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Acute abdomen as a presentation of COVID-19 is rare, and its correlation to COVID-19 features and prognosis remains undetermined. Herein, we describe a case of appendicitis in a child with confirmed diagnosis of COVID-19 and subsequent SARS-CoV-2 identification in appendix tissue.


Subject(s)
Abdomen, Acute , Appendicitis , COVID-19 , Systemic Inflammatory Response Syndrome , Abdomen, Acute/etiology , Appendicitis/complications , Appendicitis/diagnosis , COVID-19/complications , COVID-19/diagnosis , Child , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/diagnosis
12.
Arch Pathol Lab Med ; 145(5): 529-535, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1207909

ABSTRACT

CONTEXT.­: This study represents the largest compilation to date of clinical and postmortem data from decedents with coronavirus disease 2019 (COVID-19). It will augment previously published small series of autopsy case reports, refine clinicopathologic considerations, and improve the accuracy of future vital statistical reporting. OBJECTIVE.­: To accurately reflect the preexisting diseases and pathologic conditions of decedents with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection through autopsy. DESIGN.­: Comprehensive data from 135 autopsy evaluations of COVID-19-positive decedents is presented, including histologic assessment. Postmortem examinations were performed by 36 pathologists at 19 medical centers or forensic institutions in the United States and Brazil. Data from each autopsy were collected through the online submission of multiple-choice and open-ended survey responses. RESULTS.­: Patients dying of or with COVID-19 had an average of 8.89 pathologic conditions documented at autopsy, spanning a combination of prior chronic disease and acute conditions acquired during hospitalization. Virtually all decedents were cited as having more than 1 preexisting condition, encompassing an average of 2.88 such diseases each. Clinical conditions during terminal hospitalization were cited 395 times for the 135 autopsied decedents and predominantly encompassed acute failure of multiple organ systems and/or impaired coagulation. Myocarditis was rarely cited. CONCLUSIONS.­: Cause-of-death statements in both autopsy reports and death certificates may not encompass the severity or spectrum of comorbid conditions in those dying of or with COVID-19. If supported by additional research, this finding may have implications for public health decisions and reporting moving forward through the pandemic.


Subject(s)
COVID-19/pathology , Adult , Aged , Aged, 80 and over , Autopsy , Brazil/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Cause of Death , Chronic Disease , Comorbidity , Female , Humans , Male , Middle Aged , Pandemics , Surveys and Questionnaires , United States/epidemiology
13.
EClinicalMedicine ; 35: 100850, 2021 May.
Article in English | MEDLINE | ID: covidwho-1201119

ABSTRACT

BACKGROUND: COVID-19 in children is usually mild or asymptomatic, but severe and fatal paediatric cases have been described. The pathology of COVID-19 in children is not known; the proposed pathogenesis for severe cases includes immune-mediated mechanisms or the direct effect of SARS-CoV-2 on tissues. We describe the autopsy findings in five cases of paediatric COVID-19 and provide mechanistic insight into the mechanisms involved in the pathogenesis of the disease. METHODS: Children and adolescents who died with COVID-19 between March 18 and August 15, 2020 were autopsied with a minimally invasive method. Tissue samples from all vital organs were analysed by histology, electron microscopy (EM), reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). FINDINGS: Five patients were included, one male and four female, aged 7 months to 15 years. Two patients had severe diseases before SARS-CoV-2 infection: adrenal carcinoma and Edwards syndrome. Three patients were previously healthy and had multisystem inflammatory syndrome in children (MIS-C) with distinct clinical presentations: myocarditis, colitis, and acute encephalopathy with status epilepticus. Autopsy findings varied amongst patients and included mild to severe COVID-19 pneumonia, pulmonary microthrombosis, cerebral oedema with reactive gliosis, myocarditis, intestinal inflammation, and haemophagocytosis. SARS-CoV-2 was detected in all patients in lungs, heart and kidneys by at least one method (RT-PCR, IHC or EM), and in endothelial cells from heart and brain in two patients with MIS-C (IHC). In addition, we show for the first time the presence of SARS-CoV-2 in the brain tissue of a child with MIS-C with acute encephalopathy, and in the intestinal tissue of a child with acute colitis. Interpretation: SARS-CoV-2 can infect several cell and tissue types in paediatric patients, and the target organ for the clinical manifestation varies amongst individuals. Two major patterns of severe COVID-19 were observed: a primarily pulmonary disease, with severe acute respiratory disease and diffuse alveolar damage, or a multisystem inflammatory syndrome with the involvement of several organs. The presence of SARS-CoV-2 in several organs, associated with cellular ultrastructural changes, reinforces the hypothesis that a direct effect of SARS-CoV-2 on tissues is involved in the pathogenesis of MIS-C. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Bill and Melinda Gates Foundation.

14.
J Pathol ; 254(3): 239-243, 2021 07.
Article in English | MEDLINE | ID: covidwho-1173836

ABSTRACT

The ability of the new coronavirus SARS-CoV-2 to spread and contaminate is one of the determinants of the COVID-19 pandemic status. SARS-CoV-2 has been detected in saliva consistently, with similar sensitivity to that observed in nasopharyngeal swabs. We conducted ultrasound-guided postmortem biopsies in COVID-19 fatal cases. Samples of salivary glands (SGs; parotid, submandibular, and minor) were obtained. We analyzed samples using RT-qPCR, immunohistochemistry, electron microscopy, and histopathological analysis to identify SARS-CoV-2 and elucidate qualitative and quantitative viral profiles in salivary glands. The study included 13 female and 11 male patients, with a mean age of 53.12 years (range 8-83 years). RT-qPCR for SARS-CoV-2 was positive in 30 SG samples from 18 patients (60% of total SG samples and 75% of all cases). Ultrastructural analyses showed spherical 70-100 nm viral particles, consistent in size and shape with the Coronaviridae family, in the ductal lining cell cytoplasm, acinar cells, and ductal lumen of SGs. There was also degeneration of organelles in infected cells and the presence of a cluster of nucleocapsids, which suggests viral replication in SG cells. Qualitative histopathological analysis showed morphologic alterations in the duct lining epithelium characterized by cytoplasmic and nuclear vacuolization, as well as nuclear pleomorphism. Acinar cells showed degenerative changes of the zymogen granules and enlarged nuclei. Ductal epithelium and serous acinar cells showed intense expression of ACE2 and TMPRSS receptors. An anti-SARS-CoV-2 antibody was positive in 8 (53%) of the 15 tested cases in duct lining epithelial cells and acinar cells of major SGs. Only two minor salivary glands were positive for SARS-CoV-2 by immunohistochemistry. Salivary glands are a reservoir for SARS-CoV-2 and provide a pathophysiological background for studies that indicate the use of saliva as a diagnostic method for COVID-19 and highlight this biological fluid's role in spreading the disease. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Saliva/virology , Salivary Glands/virology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction/methods , United Kingdom , Young Adult
16.
Respir Res ; 22(1): 32, 2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1054820

ABSTRACT

BACKGROUND: Pulmonary involvement in COVID-19 is characterized pathologically by diffuse alveolar damage (DAD) and thrombosis, leading to the clinical picture of Acute Respiratory Distress Syndrome. The direct action of SARS-CoV-2 in lung cells and the dysregulated immuno-coagulative pathways activated in ARDS influence pulmonary involvement in severe COVID, that might be modulated by disease duration and individual factors. In this study we assessed the proportions of different lung pathology patterns in severe COVID-19 patients along the disease evolution and individual characteristics. METHODS: We analysed lung tissue from 41 COVID-19 patients that died in the period March-June 2020 and were submitted to a minimally invasive autopsy. Eight pulmonary regions were sampled. Pulmonary pathologists analysed the H&E stained slides, performing semiquantitative scores on the following parameters: exudative, intermediate or advanced DAD, bronchopneumonia, alveolar haemorrhage, infarct (%), arteriolar (number) or capillary thrombosis (yes/no). Histopathological data were correlated with demographic-clinical variables and periods of symptoms-hospital stay. RESULTS: Patient´s age varied from 22 to 88 years (18f/23 m), with hospital admission varying from 0 to 40 days. All patients had different proportions of DAD in their biopsies. Ninety percent of the patients presented pulmonary microthrombosis. The proportion of exudative DAD was higher in the period 0-8 days of hospital admission till death, whereas advanced DAD was higher after 17 days of hospital admission. In the group of patients that died within eight days of hospital admission, elderly patients had less proportion of the exudative pattern and increased proportions of the intermediate patterns. Obese patients had lower proportion of advanced DAD pattern in their biopsies, and lower than patients with overweight. Clustering analysis showed that patterns of vascular lesions (microthrombosis, infarction) clustered together, but not the other patterns. The vascular pattern was not influenced by demographic or clinical parameters, including time of disease progression. CONCLUSION: Patients with severe COVID-19 present different proportions of DAD patterns over time, with advanced DAD being more prevalent after 17 days, which seems to be influenced by age and weight. Vascular involvement is present in a large proportion of patients, occurs early in disease progression, and does not change over time.


Subject(s)
COVID-19/pathology , Lung Injury/pathology , Lung/pathology , Adult , Age Factors , Aged , Aged, 80 and over , Autopsy , COVID-19/complications , Demography , Disease Progression , Female , Humans , Infarction/epidemiology , Infarction/pathology , Lung Injury/etiology , Male , Middle Aged , Pulmonary Alveoli/pathology , Thrombosis/etiology , Thrombosis/pathology , Young Adult
17.
Intensive Care Med ; 47(2): 199-207, 2021 02.
Article in English | MEDLINE | ID: covidwho-1002065

ABSTRACT

PURPOSE: This study was designed to evaluate the usefulness of lung ultrasound (LUS) imaging to characterize the progression and severity of lung damage in cases of COVID-19. METHODS: We employed a set of combined ultrasound parameters and histopathological images obtained simultaneously in 28 patients (15 women, 0.6-83 years) with fatal COVID-19 submitted to minimally invasive autopsies, with different times of disease evolution from initial symptoms to death (3-37 days, median 18 days). For each patient, we analysed eight post-mortem LUS parameters and the proportion of three histological patterns (normal lung, exudative diffuse alveolar damage [DAD] and fibroproliferative DAD) in eight different lung regions. The relationship between histopathological and post-mortem ultrasonographic findings was assessed using various statistical approaches. RESULTS: Statistically significant positive correlations were observed between fibroproliferative DAD and peripheral consolidation (coefficient 0.43, p = 0.02) and pulmonary consolidation (coefficient 0.51, p = 0.005). A model combining age, time of evolution, sex and ultrasound score predicted reasonably well (r = 0.66) the proportion of pulmonary parenchyma with fibroproliferative DAD. CONCLUSION: The present study adds information to previous studies related to the use of LUS as a tool to assess the severity of acute pulmonary damage. We provide a histological background that supports the concept that LUS can be used to characterize the progression and severity of lung damage in severe COVID-19.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Ultrasonography , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Child , Child, Preschool , Correlation of Data , Female , Humans , Infant , Lung/pathology , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL